Sunday, 7 May 2017

Exponentiell Gleitender Durchschnitt C Code

Ich weiß, dies ist erreichbar mit Boost wie pro: Aber ich möchte wirklich vermeiden, mit Boost. Ich habe gegoogelt und keine geeigneten oder lesbaren Beispiele gefunden. Grundsätzlich möchte ich den gleitenden Durchschnitt eines laufenden Stroms eines Gleitkommazahlstroms mit den letzten 1000 Zahlen als Datenprobe verfolgen. Was ist der einfachste Weg, um dies zu erreichen, experimentierte ich mit einem kreisförmigen Array, exponentiellen gleitenden Durchschnitt und einem einfacheren gleitenden Durchschnitt und festgestellt, dass die Ergebnisse aus dem kreisförmigen Array meine Bedürfnisse am besten geeignet. Wenn Ihre Bedürfnisse sind einfach, können Sie nur versuchen, mit einem exponentiellen gleitenden Durchschnitt. Setzen Sie einfach, Sie eine Akkumulator-Variable, und wie Ihr Code sieht auf jede Probe, aktualisiert der Code den Akkumulator mit dem neuen Wert. Sie wählen eine konstante Alpha, die zwischen 0 und 1 ist, und berechnen Sie: Sie müssen nur einen Wert von Alpha zu finden, wo die Wirkung einer gegebenen Probe nur für etwa 1000 Proben dauert. Hmm, Im nicht wirklich sicher, dass dies für Sie geeignet ist, jetzt, dass Ive es hier. Das Problem ist, dass 1000 ist ein ziemlich langes Fenster für einen exponentiellen gleitenden Durchschnitt Im nicht sicher, gibt es ein Alpha, die den Durchschnitt über die letzten 1000 Zahlen, ohne Unterlauf in der Gleitkomma Berechnung. Aber, wenn Sie einen kleineren Durchschnitt wünschen, wie 30 Zahlen oder so, dieses ist eine sehr einfache und schnelle Weise, es zu tun. Beantwortet Jun 12 12 at 4:44 1 auf Ihrem Beitrag. Der exponentielle gleitende Durchschnitt kann zulassen, dass das Alpha variabel ist. Somit kann dies dazu verwendet werden, Zeitbasisdurchschnitte (z. B. Bytes pro Sekunde) zu berechnen. Wenn die Zeit seit dem letzten Akkumulator-Update mehr als 1 Sekunde beträgt, lassen Sie Alpha 1.0 sein. Andernfalls können Sie Alpha zulassen (usecs seit letztem update1000000). Ndash jxh Grundsätzlich möchte ich den gleitenden Durchschnitt eines laufenden Stroms eines Gleitkommazahls mit den neuesten 1000 Zahlen als Datenbeispiel zu verfolgen. Beachten Sie, dass im Folgenden die Summe als Elemente als addiert ergänzt wird, wobei kostspielige O (N) - Transversionen vermieden werden, um die Summe zu berechnen, die für den durchschnittlichen Bedarf erforderlich ist. Insgesamt wird ein anderer Parameter von T gebildet, um z. B. Mit einer langen langen, wenn insgesamt 1000 lange s, eine int für char s, oder eine doppelte bis total float s. Dies ist ein wenig fehlerhaft, dass Nennsignale an INTMAX vorbeiziehen könnten - wenn Sie darauf achten, dass Sie ein langes langes nicht signiertes verwenden konnten. Oder verwenden Sie ein zusätzliches Bool-Datenelement, um aufzuzeichnen, wenn der Container zuerst gefüllt wird, während numsamples rund um das Array (am besten dann umbenannt etwas harmlos wie pos). Man nehme an, daß der quadratische Operator (T-Abtastwert) tatsächlich quadratischer Operator (T-Abtastwert) ist. Ndash oPless Jun 8 14 um 11:52 Uhr oPless ahhh. Gut beobachtet. Eigentlich meinte ich, dass es sich um void operator () (T sample) handelt, aber natürlich könntet ihr auch irgendeine Notation verwenden, die ihr mochtet. Wird beheben, danke. Ndash Tony D Jun 8 14 um 14: 27Moving Average Der Moving Average Technical Indicator zeigt den durchschnittlichen Instrumentenpreis für einen bestimmten Zeitraum an. Wenn man den gleitenden Durchschnitt berechnet, berechnet man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt oder fällt sein gleitender Durchschnitt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Einfach (auch als Arithmetik bezeichnet), Exponential. Geglättet und gewichtet. Der gleitende Durchschnitt kann für jeden sequentiellen Datensatz berechnet werden, einschließlich der Eröffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Durchschnitte verwendet werden. Das Einzige, wo sich verschie - dende Durchschnittswerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Falls wir von Simple Moving Average sprechen. Alle Preise des fraglichen Zeitraums gleich sind. Exponential Moving Average und Linear Weighted Moving Average legen mehr Wert auf die neuesten Preise. Der gängigste Weg zur Interpretation des gleitenden Durchschnitts ist es, seine Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt ansteigt, erscheint ein Kaufsignal, wenn der Kurs unter den gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses handelnde System, das auf dem gleitenden Durchschnitt basiert, ist nicht entworfen, um Eintritt in den Markt direkt in seinem niedrigsten Punkt und seinem Ausgang direkt auf dem Höhepunkt zur Verfügung zu stellen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden zu erreichen, und zu verkaufen, bald nachdem die Preise ihren Höhepunkt erreicht haben. Bewegungsdurchschnitte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet das, dass die aufsteigende Indikatorbewegung wahrscheinlich fortfährt: wenn der Indikator unter seinen gleitenden Durchschnitt fällt, dieses Bedeutet, dass es wahrscheinlich weiter nach unten gehen wird. Hier sind die Arten von gleitenden Durchschnittswerten im Diagramm: Einfacher Moving Average (SMA) Exponentieller Moving Average (EMA) Glatter Moving Average (SMMA) Linearer Gewichteter Moving Average (LWMA) Sie können die Handelssignale dieses Indikators testen, indem Sie einen Expertenratgeber erstellen Im MQL5-Assistenten. Berechnung Simple Moving Average (SMA) Ein einfacher, dh arithmetisch gleitender Durchschnitt wird berechnet, indem die Preise für den Instrumentenschluss über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammengefasst werden. Dieser Wert wird dann durch die Anzahl dieser Perioden dividiert. SMA SUM (CLOSE (i), N) N SUM Summe CLOSE (i) aktuelle Periode enge Preis N Anzahl der Berechnungsperioden. Exponential Moving Average (EMA) Der exponentiell geglättete gleitende Durchschnitt wird durch Addition eines bestimmten Anteils des aktuellen Schlusskurses zum vorherigen Wert des gleitenden Durchschnitts berechnet. Bei exponentiell geglätteten gleitenden Durchschnitten sind die letzten engen Preise von mehr Wert. P-Prozentsatz exponentieller gleitender Durchschnitt wird folgendermaßen aussehen: EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) CLOSE (i) Einer vorherigen Periode P den Prozentsatz der Verwendung des Preiswertes. Gleitender gleitender Mittelwert (SMMA) Der erste Wert dieses geglätteten gleitenden Mittelwertes wird als einfacher gleitender Mittelwert (SMA) berechnet: SUM1 SUM (CLOSE (i), N) Der zweite gleitende Durchschnitt wird gemäß dieser Formel berechnet: SMMA (i) (I - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) SCHLIESSEN (i)) N Nachfolgende gleitende Mittelwerte werden nach folgender Formel berechnet: N SUM Summe SUM1 Summe der Schlusskurse für N Perioden wird von der vorherigen Bar gezählt PREVSUM geglättete Summe der vorherigen Bar SMMA (i-1) geglättetes gleitendes Mittel der vorherigen Bar SMMA (i) geglättetes gleitendes Mittel des aktuellen Balkens (Außer für die erste) SCHLIESSEN (i) gegenwärtig nahe Preis N Glättungsperiode. Nach arithmetischen Konvertierungen kann die Formel vereinfacht werden: SMMA (i) (SMMA (i - 1) (N - 1) CLOSE (i)) N Linearer gewichteter gleitender Durchschnitt (LWMA) Von mehr Wert als mehr frühe Daten. Der gewichtete gleitende Durchschnitt wird berechnet, indem jeder der Schlusskurse innerhalb der betrachteten Reihe mit einem gewissen Gewichtskoeffizienten multipliziert wird: LWMA SUM (CLOSE (i) i, N) SUM (i, N) SUM Summe CLOSE (i) aktueller Schlusskurs SUM (i, N) Gesamtsumme der Gewichtskoeffizienten N Glättungsperiode.


No comments:

Post a Comment