Thursday, 22 June 2017

Berechnung Exponentiell Gewichtet Gleitend

Angesichts einer Zeitreihe xi möchte ich einen gewichteten gleitenden Durchschnitt mit einem Mittelungsfenster von N Punkten berechnen, wobei die Gewichtungen für neuere Werte über ältere Werte sprechen. Bei der Wahl der Gewichte verwende ich die bekannte Tatsache, daß eine geometrische Reihe gegen 1 konvergiert, d. H. Sum (frac) k, sofern unendlich viele Begriffe genommen werden. Um eine diskrete Zahl von Gewichtungen zu erhalten, die zu Eins summieren, nehme ich einfach die ersten N Terme der geometrischen Reihe (frac) k und dann die Normalisierung durch ihre Summe. Bei N4 ergeben sich zum Beispiel die nicht normierten Gewichte, die nach Normalisierung durch ihre Summe ergibt. Der gleitende Mittelwert ist dann einfach die Summe aus dem Produkt der letzten 4 Werte gegen diese normierten Gewichte. Diese Methode verallgemeinert sich in der offensichtlichen Weise zu bewegten Fenstern der Länge N und scheint auch rechnerisch einfach. Gibt es einen Grund, diese einfache Methode nicht zu verwenden, um einen gewichteten gleitenden Durchschnitt mit exponentiellen Gewichten zu berechnen, frage ich, weil der Wikipedia-Eintrag für EWMA komplizierter erscheint. Was mich fragt, ob die Lehrbuch-Definition von EWMA hat vielleicht einige statistische Eigenschaften, die die obige einfache Definition nicht oder sind sie in der Tat gleichwertig sind, beginnen Sie mit 1), dass es keine ungewöhnlichen Werte Und keine Pegelverschiebungen und keine Zeittrends und keine saisonalen Dummies 2), dass das optimale gewichtete Mittel Gewichte aufweist, die auf eine gleichmäßige Kurve fallen, die durch einen Koeffizienten 3 beschreibbar ist), dass die Fehlerabweichung konstant ist, dass es keine bekannten Ursachenreihen gibt Annahmen. Ndash IrishStat Okt 1 14 am 21:18 Ravi: In dem gegebenen Beispiel ist die Summe der ersten vier Ausdrücke 0,9375 0,06250,1250.250,5. Die ersten vier Ausdrücke haben also 93,8 des Gesamtgewichts (6,2 ist im abgeschnittenen Schwanz). Verwenden Sie diese, um normierte Gewichte zu erhalten, die zu einer Einheit durch Reskalierung (dividieren) um 0,9375 zusammenkommen. Dies ergibt 0,06667, 0,1333, 0,267, 0,5333. Ndash Assad Ebrahim Ich habe festgestellt, dass die Berechnung der exponentiell gewichteten laufenden Durchschnitte mit overline leftarrow overline alpha (x - overline), alphalt1 ist eine einfache einzeilige Methode, die leicht, wenn auch nur annähernd interpretierbar in Bezug auf Eine effektive Anzahl von Proben Nalpha (vergleichen Sie diese Form an die Form für die Berechnung der laufenden Mittelwert), erfordert nur das aktuelle Datum (und den aktuellen Mittelwert), und ist numerisch stabil. Technisch integriert dieser Ansatz alle Geschichte in den Durchschnitt. Die beiden Hauptvorteile bei der Verwendung des Vollfensters (im Gegensatz zum verkürzten, in der Frage diskutierten) liegen darin, dass es in einigen Fällen die analytische Charakterisierung der Filterung erleichtern kann, und es reduziert die Fluktuationen, die bei sehr großen (oder kleinen) Daten induziert werden Wert ist Teil des Datensatzes. ZB betrachten Sie das Filterergebnis, wenn die Daten alle Null sind, mit Ausnahme eines Datums, dessen Wert 106 ist. Antwortete Nov 29 12 bei 0: 33Der EWMA-Ansatz hat ein attraktives Merkmal: es erfordert relativ wenig gespeicherte Daten. Um unsere Schätzung an jedem Punkt zu aktualisieren, benötigen wir nur eine vorherige Schätzung der Varianzrate und des jüngsten Beobachtungswertes. Ein weiteres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen. Für kleine Werte beeinflussen jüngste Beobachtungen die Schätzung zeitnah. Für Werte, die näher an einem liegen, ändert sich die Schätzung langsam auf der Grundlage der jüngsten Änderungen in den Renditen der zugrundeliegenden Variablen. Die von JP Morgan erstellte und öffentlich zugängliche RiskMetrics-Datenbank nutzt die EWMA zur Aktualisierung der täglichen Volatilität. WICHTIG: Die EWMA-Formel geht nicht von einem lang anhaltenden durchschnittlichen Varianzniveau aus. So bedeutet das Konzept der Volatilität Reversion nicht von der EWMA erfasst. Die ARCHGARCH Modelle sind dafür besser geeignet. Ein sekundäres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen, so dass bei kleinen Werten die jüngsten Beobachtungen die Schätzung zeitnah beeinflussen und bei Werten, die näher zu eins sind, sich die Schätzung langsam auf die jüngsten Änderungen der Renditen der zugrunde liegenden Variablen ändert. Die RiskMetrics-Datenbank (erstellt von JP Morgan), die 1994 veröffentlicht wurde, verwendet das EWMA-Modell zur Aktualisierung der täglichen Volatilitätsschätzung. Das Unternehmen festgestellt, dass über eine Reihe von Marktvariablen, gibt dieser Wert der Prognose der Varianz, die am nächsten zu realisierten Varianz Rate kommen. Die realisierten Varianzraten an einem bestimmten Tag wurden als gleichgewichteter Durchschnitt der folgenden 25 Tage berechnet. Um den optimalen Wert von lambda für unseren Datensatz zu berechnen, müssen wir die realisierte Volatilität an jedem Punkt berechnen. Es gibt mehrere Methoden, so wählen Sie ein. Als nächstes wird die Summe der quadratischen Fehler (SSE) zwischen der EWMA-Schätzung und der realisierten Volatilität berechnet. Schließlich minimieren die SSE durch Variieren des Lambdawertes. Klingt einfach Es ist. Die größte Herausforderung besteht darin, einen Algorithmus zur Berechnung der realisierten Volatilität zu vereinbaren. Zum Beispiel wählten die Leute bei RiskMetrics die folgenden 25 Tage, um die realisierte Varianzrate zu berechnen. In Ihrem Fall können Sie einen Algorithmus, der Tägliche Volumen, HILO und OPEN-CLOSE Preise verwendet. Q 1: Können wir EWMA verwenden, um die Volatilität mehr als einen Schritt voraus zu schätzen (oder prognostizieren) Die EWMA-Volatilitätsdarstellung setzt keine langfristige Durchschnittsvolatilität voraus, so dass die EWMA für jeden Prognosehorizont über einen Schritt hinaus eine Konstante zurückgibt Wert:


No comments:

Post a Comment